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Abstract--Fabric shape is often quantified using the three eigenvalues from the 'orientation tensor' method applied 
to a sample of directions. Several studies have used eigenvalues plotted on fabric shape diagrams to distinguish 
sedimentary facies or strain histories. However, such studies seldom consider how well the sample eigenvalues 
represent the true fabric shape. In this paper, we use 'bootstrapping' techniques to define confidence regions for 
sample eigenvalues, and show that sample and population eigenvalues may differ substantially. Confidence regions 
are often very large for small sample sizes, and we recommend that sample sizes should be at least 50. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

Tile 'orientation tensor' or 'eigenvalue method' has been 
widely adopted as a useful way of summarizing three- 
dimensional orientation data. It is very similar to the 
well-known multivariate statistical method principal 
component analysis (PCA) and resolves sets of observa- 
ticns into three mutually-orthogonal eigenvectors, Vl, ~2 
and v3, in which Vl, the principal eigenvector, is parallel to 
the axis of maximum clustering in the data, and v3 is 
normal to the preferred plane (Scheidegger, 1965; 
Watson, 1966; Mardia, 1972, pp. 223-226; Mark, 1973, 
1974). The method is of course only appropriate when the 
as~,mmption of such orthogonality is valid. The degree of 
cltLstering about the respective eigenvectors is given by 
the normalized vector magnitudes (eigenvalues) $1, $2 
ancl $3, where $1 + $2 + $3 = 1. The eigenvalue method, 
therefore, can reduce large data sets to simple descriptive 
statistics, allowing the ready comparison of data from 
m~.ny localities. Taken together, the three eigenvalues 
define the 'shape' of the data distribution, which varies 
belween three end members (Fig. la; Watson, 1966; 
Woodcock, 1977; Benn, 1994a). Isotropic fabrics (with 
da:a points evenly distributed over a sphere) have $1 "" 
$2-~ $3; planar girdles (with points evenly distributed 
around a great circle) have $1-~ $2 > $3; and linear 
clusters (with all observations approximately parallel) 
have Sl > $2 "~ $3. In Fig. 1 (a), the continuum of fabric 
shapes is represented on the equilateral or general shape 
triangle introduced by Benn (1994a,b), which is scaled 
using an isotropy index I = $3 / $1 and an elongation 
index E = l -($2/$1). Within this continuum, any fabric 
cart be represented as a point. Another popular plotting 
method shown in Fig. l(b) is the biaxial plot of $3 vs $1, 

where the usable part of the diagram is a triangle which is 
topologically equivalent to Fig. l(a). Other alternatives 
include a triangular plot of $1, $2 and $3 or a plot of 
log (S1/S2) vs log ($2/$3) (Mark, 1974; Woodcock, 1977; 
Benn, 1994a). 

Fabric eigenvalues are widely used to distinguish 
sedimentary facies and deformational styles, and pro- 
gress has been made in interpreting them in terms of 
depositional processes and strain histories (Lawson, 
1979; Domack and Lawson, 1985; Dowdeswell and 
Sharp, 1986; Hart, 1994; Benn, 1994b, 1995). Such 
interpretations of eigenvalue data very rarely question 
the idea that the eigenvalues faithfully represent the 'true' 
fabric of the material, but fabric eigenvalues are derived 
from samples and are therefore subject to variability 
about the true population values. There is no guarantee 
that sample eigenvalues are particularly representative of 
the facies under investigation, or that differences between 
measured eigenvalues for any two samples are due to true 
differences or merely sampling effects. It is clearly 
important to be able to define confidence regions 
around points on fabric shape diagrams to aid in the 
interpretation of fabrics and to guide choices about 
sample size and sampling strategy. 

There is unfortunately no complete theory that could 
allow the construction of such confidence regions, and 
therefore no theoretical basis for discriminating between 
samples or defining sample sizes. In this paper, we 
approach this problem by 'bootstrapping' or construct- 
ing empirical confidence regions by repeated sampling 
from known populations. We show that fabric eigenva- 
lues are commonly subject to large variability, and that 
failure to take this into account can introduce serious 
errors into the interpretation of orientation data. 
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Fig. 1. (a) General shape triangle I is isotropy index; E elongation 

index. (b) Biaxial plot. 

POPULATIONS, SAMPLES AND EIGENVALUES 

In ordinary univariate statistics, the fact that sample 
characteristics are likely to differ from those of the 
population is almost always recognised, and is usually 
allowed for by using hypothesis tests or confidence 
intervals. However, in multivariate cases such recogni- 
tion and allowance is much less common. This is partly 
because of the much greater difficulty in allowing for the 
variability, since multivariate distributions tend to be less 
realistic or less tractable, and often both, than their 
univariate counterparts. Hence multivariate statistics has 
unfortunately split into two camps. Mathematical statis- 
ticians produce tests and confidence regions which are of 
little practical use and which make the often barely 
credible assumption of multivariate normality, or some- 
thing similar. On the other hand applied statisticians and 
people in other subject areas who use multivariate 
statistics very often carry out their data analysis blithely 
ignoring the fact that they are only dealing with a sample. 
Fortunately this has started to change, as recent papers 
such as Markus (1994a,b), Milan and Whittaker (1995), 
and Ringrose (1992, 1994, 1996) covering correspon- 

dence analysis, PCA, and canonical variate analysis, 
show. In these cases observations are projected onto the 
new axes (eigenvectors) derived by the methods and it is 
the variability in these coordinates which is assessed. In 
ordinary PCA the standard errors of the sample eigenva- 
lues are well known if the data are assumed to come from 
a multivariate normal distribution (Anderson, 1984). In 
the orientation tensor method it is the variability in the 
eigenvalues which we must consider, but we cannot 
assume multivariate normal data and hence the results 
for PCA do not carry over, despite the similarity in the 
methods. 

Several probability distributions can be assumed for 
axial data (Fisher et al., 1987; Jupp and Mardia, 1989). 
However, there are no usable results concerning the 
orientation tensor eigenvalues except for the isotropic 
case, so that previous work has always concentrated on 
tests for isotropy (Bingham, 1974; Woodcock, 1977; 
Woodcock and Naylor, 1983). While useful, these only 
tell a very small part of the story. In particular, the effect 
of gravity means that genuinely isotropic fabrics are 
unlikely for simple physical reasons. This paper therefore 
addresses the problem of creating a confidence region for 
any point on a fabric shape diagram. 

In the present case the 'population' means the true 
fabric shape, and it is assumed that interest is focused on 
the three population eigenvalues which define this shape. 
By 'population' eigenvalues we simply mean the eigenva- 
lues we would obtain by collecting an arbitrarily huge 
sample, and we wish to know how accurate the 
eigenvalues from a smaller sample will be. In the 
following it is sometimes assumed that the population 
eigenvalues are known, thus allowing certain features to 
be introduced and described more easily. Later we will 
move onto the realistic case of them being unknown. The 
population eigenvalues will be denoted 21 _> 22 _> 23 and 
the observed sample eigenvalues S1 > $2 >_ $3. 

A central problem when dealing with eigenvalues, 
which does not seem to have been explicitly recognised 
in fabric shape studies, is that, in general, the difference 
between the highest and lowest eigenvalues will be greater 
for samples than for the parent population, in other 
words the sample eigenvalues will be more 'spread out' 
than the population ones. This effect is small if the 
population eigenvalues are well separated from each 
other but can be very substantial if they are at all close. 

It is easy to see why this feature occurs. Suppose that 
the population eigenvalues are 21 =0.35, 22=0.33 and 
23 = 0.32, so that the fabric is almost isotropic. When a 
sample is taken, the sample eigenvalues are random 
variables which will depart from their population 
values, with the amount of the departure depending on 
the size and features of this sample. Let Lj be the sample 
eigenvalue corresponding to 2j. Suppose that the sample 
eigenvalues are such that Ll=21--0.03, L 2 = 2 2 + 0 . 0 5  

and L3=23-0.02,  so that LI=0.32,  L2=0.38 and 
L3 = 0.3. Hence the first two axes have 'swopped over' 
and we in fact have Sl = L2 = 0.38 and $2 = L1 = 0.32. The 
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first sample eigenvalue/eigenvector pair corresponds to 
the second population eigenvalue/eigenvector pair and 
vice-versa. When the eigenvalues are close, especially 
when n is small, such swopovers happen frequently so 
that, because the first sample eigenvalue S~ is by 
definition the largest, S1 will nearly always be larger 
than 21. By the same reasoning we nearly always have 
$3 < 23. A similar effect occurs when only two of the 
eigenvalues are close, so that they will also be more 
spread out in the sample than in the population. 

Therefore the sample eigenvalues will usually tend to 
make a fabric seem less isotropic, and less girdle-like, 
than it really is. Hence on both the general shape triangle 
and biaxial fabric diagrams the sample point will usually 
plot below and to the right of the true population point, 
with other plots being affected similarly. The sample 
points 'drift' towards the 'cluster' vertex, and the closer 
the population points are to the top and left of the 
diagrams the larger this drift will tend to be. The general 
shape triangle is slightly more affected by this than the 
b: axial plot due to the form of/ ,  but the effect applies to 
all eigenvalue-based plots. 

Similarly in all cases the sample points will 'drift' away 
from the edges of the plot, because these represent sample 
eigenvalues being exactly equal to each other, or zero, 
and this almost never happens. This can be compared to 
the case of a fair coin, where it is almost impossible to 
obtain exactly 50% heads so that the coin always seems 
more 'biased' than it really is. 

Of course, tests for isotropy partially deal with this 
problem, showing that a sample point plotting a fair 
distance away from the 'isotropic' vertex could still have 
come from an isotropic population. Woodcock and 
Naylor (1983) discuss various tests, one of which is 
based on Monte Carlo simulation of $1/$3, though an 
easier way to generate the simulated data is given by 
Fisher et al. (1987). Note also that the tests of Mardia 
(1972) mentioned in Woodcock and Naylor (1983) are 
the same, of uniformity against the alternative of a 
Bi ngham distribution. 

However, the feature is more widespread than this, 
since swopovers and drift can happen even for quite 
substantially non-isotropic populations. To illustrate this 
pioblem, Fig. 2 (a & b) show triangular and biaxial plots 
for the same one hundred simulated data sets of size 50, 
w: th population eigenvalues of 0.46, 0.4348 and 0.1052 so 
that I=0.2287 and E=0.0548. The population point, 
plotted as 'P', is close to the left hand 'girdle' side but 
nearly all of the 100 simulated samples plot further to the 
right, so that in many of these cases the near-girdle nature 
ot the population would not be apparent. The samples 
la ~elled c,d,e are stereoplotted in Fig. 2(c-e), respectively, 
to illustrate the link between the methods. Note that to 
cempare all of the samples without using the shape 
triangles we would need to compare 100 stereoplots. 

These and all subsequent simulated data sets were 
generated from the angular central Gaussian distribu- 
tion, defined by Tyler (1987). To do this we simply 

generate three observations from independent normal 
distributions in the usual way and then normalize them to 
have unit sum, thus making the three together define a 
direction. This is exactly the same as the method for 
generating isotropic samples in Fisher et al. (1987), 
except that the normal variates can have different 
variances. To make the data vector axial we simply 
constrain it further so that one of the three dimensions 
must have a pre-specified sign. In this case the third 
dimension was constrained always to be negative, by 
multiplying all three elements by - 1 when this was not 
the case. The variances of the normal distributions define 
the population structure (eigenvalues) while the indepen- 
dence can be assumed without loss of generality. The 
relationship between the variances and the population 
eigenvalues for the orientation tensor method is not a 
simple one but can be calculated exactly (Ringrose and 
Jupp, in preparation). 

To a certain extent the 'drift' phenomenon is an 
unavoidable feature of eigenvalues, but it is also a 
function of the plotting. In the present case, in which 
the population eigenvalues 21 and 2 2 a r e  very similar, and 
so the population point is close to the edge of the plot, 
consider what happens with various values of L1 and L2. 
As L2 gets closer to L1 the point plots further left (and 
down), but when L2 reaches L1 and overtakes it the point 
is 'reflected' back from the boundary of the diagram and 
moves right as L2 increases further relative to L1, since $1 
is increasing relative to $2. Hence the sample point is only 
to the left of the population point if L1 and L2 are closer 
than 21 and 22, so that when sampling produces frequent 
'swopovers' the sample point will usually be to the right 
of the population point. 

This problem can be overcome by modifying the 
general shape triangle to form a six-way plot, in which 
the assumption that the ith sample eigenvalue corre- 
sponds to the ith population eigenvalue is relaxed (Fig. 
3a). The bottom panel of the diagram is the same as the 
general shape triangle, but in the other panels the 
ordering of the eigenvalues differs from those of the 
parent population. The six triangles represent the six 
possible orderings of the sample eigenvalues with respect 
to the population ones. For example, a sample in which 
L~ and L 2 have swopped over will plot in the lower left 
panel, and one in which Ll and L3 have swopped over will 
plot in the upper panel. Thus, the six-way plot contains 
more information than the general shape triangle, which 
does not distinguish between points that have eigenvalue 
swopovers and those that have not. This diagram is 
similar to those introduced by Hsu (1966), Hossack 
(1968), Owens (1974) and Woodcock (1977), but with 
some differences in scaling. Figure 3(b) shows the six-way 
plot for the same data as in Fig. 2, with the stereoplotted 
samples again labelled. In this case, samples with swop- 
overs are clearly identified, and the population point P 
falls well inside the cloud of sample points. A similar idea 
would be to plot these points inside the 'unusable' parts 
of the triangular plot of Sb $2 and $3 (Mark, 1974; Benn, 
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Fig. 2. (a) General shape triangle plot of 100 simulated data sets, n - 50. P is the population point c, dand  e are sample points. 
(b) Biaxial plot of the same 100 simulated data sets, n -  50. ( c~)  Stereoplots of the simulated data sets shown in (a) and (b) 
(c- -  eigenvalues 0.4572, 0.4486, 0.0941; 1-0.2060,  E =  0.0187; d eigenvalues 0.5219, 0.3714, 0.1068; I -  0.2046, E =  0.2884; 

e--eigenvalues  0.5874, 0.2949, 0.1177; 1 ~ 0.2004, E-0.4980) .  

1994a). However, in such a diagram girdles would plot as 
intermediate points rather than at vertices, making it less 
generally useful than the six-way plot above. 

Eigenvalue swopovers can be detected by inspecting 
the eigenvectors. When, say, the first two eigenvalues 
swop places, so, by definition, will the first two eigenvec- 
tors. Hence the first sample eigenvector will look like the 
second population eigenvector and the second like the 
first. Therefore swopovers are detected by comparing 
sample to population eigenvectors and matching the 
former to the latter, as outlined in Ringrose (1994, 1996). 
The closest fit of the sample to the population eigenvec- 
tors is ascertained and this is taken to be the ordering of 
the eigenvalues. This is confused somewhat by the fact 
that, when two eigenvalues are very close, the individual 
eigenvectors become ill-defined and, technically, only the 
plane covered by the pair together is well-defined. If the 
sample eigenvalues respect the order of the population 
eigenvalues then the sample point plots in the bottom 
triangle as normal. If they do not then they plot in one of 
the other six triangles as shown in Fig. 3(a). Some of the 
'drift' problem remains, but this seems to be unavoidable. 

The extent of eigenvalue/eigenvector swopovers is 
illustrated for a grid of points in Fig. 4. For each location 
of a population point on the triangular diagram we 
calculate the corresponding eigenvalues and generate 
1000 samples from the appropriate angular central 
Gaussian distribution. These samples are of size 25, 50 
or 100, and the pictures show the number of these 1000 
simulations where the first simulated eigenvalue does not 
correspond to the first population eigenvalue. As 
expected, for a girdle distribution this happens half of 
the time and, for isotropy, two-thirds of the time. 

Clearly the main determinants of the likelihood of 
swopover are the index of elongation E and the sample 
size n. For n = 100, swopovers present a substantial 
problem where E<0.2; for n=50, swopovers are a 
problem for E<0.3, and for n=25, swopovers are 
problematical for E<0.4. Thus, when the sample size is 
small, 'swopovers' may introduce spurious or misleading 
results in over half of the area of fabric plots, and this is 
even when we are ignoring swopovers between just the 
second and third eigenvalues. 

Of course in practice we do not know the population 



Confidence regions for fabric shape diagrams 1531 

(a )  Girdle Cluster 

D m 

Girdle Cluster 

(a )  / ~ s o t r o p y  

5 3 

5 2 

5 3 

5; I  '~/1 3GI 252 145 8,2, 24 5 0 0 0 o 

Girdle Cluster 

( b )  Girdle Cluster 

Girdle Cluster 
Fig. 3. (a) Six-way plot showing how eigenvalues are ordered in each 

sub-field. (b) Six-way plot of  100 simulated data sets, n - 50. 

( b )  ~Isotropy 

510 332 I GO 73 I 4 3 O O O O '0 

Girdle Cluster 

eigenvalues. The above shows the kind of variability we 
should expect in our samples, so that if we fail to take it 
inlo account we may make serious mistakes. The 
fo!lowing section considers the practical situation of 
having a sample and wishing to learn as much as possible 
about the population from which it was drawn. 

Pal (1993) gives a comprehensive review of methods, 
allowing for the problems noted above, which estimate 
the eigenvalues of the population covariance matrix of 
multivariate normal data. However, although these are 
essentially the PCA eigenvalues, and the orientation 
tensor case is very similar to this, again the requisite 
db~tributional results do not carry over. 

CONFIDENCE REGIONS 

Eigenvalues are notoriously difficult to produce con- 
fidence regions for because the special cases where some 

0°0°0°0°0 \ 
Girdle Cluster 

Fig. 4. Nu mb er  out  of  1000 simulations with swopovers.  (a) n -  25; (b) 
n - 50; (c) n = 100. 
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eigenvalues are identical have drastically different prop- 
erties to those where all are distinct. Hence, while it is 
often quite easy to develop tests for the special cases by 
assuming that they are true and then assessing the 
compatibility of the data, it is very difficult to produce a 
confidence region allowing for all possibilities. Add to 
this the relative paucity of appropriate theoretical results 
for axial data, and the commonly-expressed suspicion of 
the distributional assumptions in the first place, and it 
quickly becomes clear that theory-based confidence 
regions are unlikely to be practical. 

Therefore we use the statistical technique of 'boot- 
strapping', first proposed by Efron (1979) and reviewed 
by Efron and Tibshirani (1993) and Young (1994). The 
basic idea is to use the observed data as a surrogate for 
the population and to draw 'bootstrap samples', or 
resamples, from the data. The bootstrap resamples 
should vary about the true sample in a similar way to 
that in which the possible samples vary about the 
population. Theoretical results exist to show that this 
works well in a wide variety of situations and allows 
variances and confidence intervals to be produced in 
cases where the theory is intractable. Unfortunately it is 
well-known that bootstrapping also has problems in 
dealing with eigenvalues when we cannot assume that 
all are distinct, an assumption that certainly cannot be 
made in the present case, as noted above. This is 
essentially due to the swopover problem. For more 
details see, for example, Beran and Srivastava (1985), 
Eaton and Tyler (1991) and Hall et al. (1993). 

The six-way diagram introduced above allows much of 
the problem to be avoided. The idea is very similar to that 
outlined above, except that the sample takes the place of 
the unknown population and the bootstrap resamples 
replace the clouds of sample points. The spread of these 
resamples then gives information on how far the sample 
might have diverged from the population, 

The eigenvalues and eigenvectors of each bootstrap 
resample are calculated in the usual way and in each case 
the correspondence between sample and resample eigen- 
values and eigenvectors is ascertained, using the method 
noted in Ringrose (1996, pp. 580-581). In the present 
case this is done as follows. Let the three sample 
eigenvectors be al, a2, a3 and the bootstrap eigenvectors 
hi, b2, b3, so that we wish to see which bj corresponds to 
each ai. There are six possible permutations, and the 
'goodness of fit' of each permutation can be judged 
simply by calculating 

3 
Z[aTbj[  (1) 
i=l 

where bj is the bootstrap eigenvector corresponding 
to the ith sample eigenvector in this permutation. If the 
aiTbj terms are all large in magnitude then we have found 
the permutation where the pairs of vectors all point in 
roughly the same direction, so that this is probably the 
correct one. Hence we choose the permutation of the bjs 
where (1) is largest. 

The scheme to produce a bootstrap confidence region 
for the population point on a fabric shape diagram, based 
on a sample of size n, is as follows: 

(1) Draw a random sample with replacement of size n 
from the sample. In the original sample each of the 
observations occurs exactly once, of course, while in a 
bootstrap resample each can appear zero, one, two or 
more times. 

(2) Repeat the above a large number B of times to 
produce B bootstrap resamples. 

(3) Perform the orientation tensor method as normal 
on each resample. 

(4) Plot each resample on the six-way fabric shape 
diagram, along with the original sample point, except 
that (1) is used to determine which segment of the plot 
each bootstrap resample appears in. The sample point is 
plotted in the bottom panel. 

Stage 1 above makes this a 'non-parametric' bootstrap. 
An alternative is the parametric bootstrap where the data 
are assumed to come from a specified distribution, the 
parameters of which are then estimated from the data, 
and the bootstrap resamples are generated from this 
distribution. 

Unfortunately there is a problem that even the six-way 
plot cannot fully solve. The likely amount of variability 
and 'drift' from population to sample and from sample to 
bootstrap decreases as the population and sample 
eigenvalues, respectively, get further from isotropy. 
Thus if a population is nearly isotropic then the possible 
samples will have very high variability, with most of them 
appearing much less isotropic than the population. If a 
sample from such a population is one of the extreme non- 
isotropic ones, then the variability of its bootstrap 
resamples will be fairly small. In contrast, if the sample 
is very similar to the population then its bootstrap 
resamples will have much larger variability. Thus, a 
sample close to the population point is likely to have a 
large confidence region while a sample far from the 
population point is likely to have a small region, just the 
opposite of what we would hope for. It is in the nature of 
confidence regions that, in extreme samples, the popula- 
tion value will be outside, but the problem is greater than 
usual here if the population is close to isotropy. 

Similarly, it is not possible to use the bootstrapping to 
correct for the 'drift'. A common technique, used in 
Markus (1994a,b), is to use the difference between sample 
and bootstrap parameter estimates as an estimate of the 
bias in the sample value, and then subtract this from the 
sample value to obtain a better estimate of the population 
value. The problem described above means that this is 
very unreliable since a large difference between sample 
and bootstrap often follows from a small difference 
between population and sample. 

In a univariate bootstrap confidence interval the basic 
procedure is to order all of the B resamples and hence use 
them to define the confidence limits, so that the range 
covered by the middle 95% of the resamples defines the 
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95% confidence interval. (In fact numerous improve- 
ments to this can be made.) This is similar to Woodcock 
and Naylor's (1983) Monte Carlo test, except that it is not 
restricted to testing just for a fully-specified special case. 
However, this is much less easy in a multivariate case 
since there is no unique way of ordering multidimen- 
sional values. A natural multivariate equivalent of this is 
to show the convex hulls of the point cloud, as in 
Greenacre (1984), Ringrose (1992) and Markus 
(1994a,b). The convex hull of a cloud of points is simply 
the set of lines joining the 'outer' points. If an elastic band 
is stretched around the outside of the point cloud and 
allowed to contract, then the points it touches are the 
outer points. Convex hulls are not perfect since they are 
highly sensitive to a small number of unusual points. 
However, by using the 'peeling' algorithm described in 
Green and Silverman (1979) we can also consider the 
more stable inner hulls. Peeling is simply the process of 
successively removing the points on the current hull and 
recalculating the hull for the remaining points. There is 
abo the minor problem of the concavity of some point 
clouds, as in Fig. 3(b). In that case it might be better to 
produce separate hulls for each panel, though such an 
approach would fail when points appeared in more than 
two or three panels. 

The method is illustrated in Fig. 5. Samples of size 50 
have been generated from four different populations: 
(ai? close to isotropic: eigenvalues are 0.3554, 0.3338 and 
0.3108 (1--0.875, E=0.0601); (b) no special features: 
ei~:envalues are 0.5192, 0.3564 and 0.1245 (•=0.240, 
E::0.314); (c) close to a girdle: eigenvalues are 0.4600, 
0.4348 and 0.1052 (•=0.229, E=0.055); (d) close to a 
cltLster: eigenvalues are 0.6425, 0.1845 and 0.1730 
(1=0.269, E= 0.713). 

In each case the population eigenvectors were taken, 
without loss of generality, to be (1,0,0), (0,1,0) and 
(0,0,-1), corresponding to the first, second and third 
population eigenvalues, respectively. 

In each diagram the population point is plotted as 'P' 
wEile ten sample points are plotted as 'S'. Since we are 
considering the situation in which we do not know the 
population eigenvalues, the sample points all plot in the 
lower panel. For each sample, the second convex hull 
based on B = 1000 bootstraps is shown. Only the hulls are 
shown, the actual bootstrap points are omitted for 
clarity. 

[n Fig. 5(a) the population is almost isotropic but some 
of the sample points plot a long way down the bottom 
panel, all plotting below the population point. However, 
the,' confidence regions of all but the two bottom-left 
sample points include the population point. The fact that 
most regions include the isotropic point means that, for 
most samples drawn from this population, the geologist 
would conclude that the fabric was effectively isotropic. 
In Fig. 5(b) the population point is fairly central but most 
of the sample points drift towards the cluster vertex, 
though only one region fails to include the population 
point. Note that one region includes a swopover between 

$2 and $3 while most of the others include one between $1 
and $2. In Fig. 5(c) the population is close to being a 
girdle so that all confidence regions include the possibility 
of a swopover between S1 and $2. All the regions include 
the population point. In Fig. 5(d) the confidence regions 
are noticeably smaller due to the much smaller variability 
in near-cluster populations, and all but one sample plots 
close to the population point. 

It would be possible, though computationally awk- 
ward, to 'fold' the six-way plot back onto the ordinary 
one-way picture, with the confidence region comprising 
all areas of the plot where the equivalent area in any of 
the six panels was included in the confidence region as 
derived above. However, the only real gain here would be 
to save paper, so that the loss of information does not 
seem worthwhile. 

The size of the regions should not be too surprising. 
For n=50 the Monte Carlo test of Woodcock and 
Naylor (1983) will reject the hypothesis of isotropy only 
for •<0.5, so that the sample point would have to plot 
halfway down the general shape triangle before we would 
conclude that the fabric was non-isotropic. The results 
here show that this variability is not confined merely to 
isotropic fabrics. 

PERFORMANCE OF THE CONFIDENCE 
REGIONS 

A simulation study was performed to assess the 
accuracy of the proposed confidence regions. The four 
population structures used in Fig. 5, the cases n = 25, 50, 
100 and the cases B = 100, 1000 are considered. For each 
combination of population, n and B, 1000 samples were 
generated and the confidence regions constructed for 
each one as described in the previous section. Then for 
each sample it was assessed whether the population point 
plotted within the generated confidence region. If the 
population point plots within the region around 95% of 
the time, then the regions are roughly equivalent to 95% 
confidence regions and so on. Note that if the population 
point plots inside the region every time then this probably 
means that they are much too big, whereas if it plots 
inside less than about 90% then they are probably not 
very useful. 

The use of a particular parametric distribution to test 
the proposed regions should not be misleading since the 
angular central Gaussian distribution fits precisely the 
kind of data to which the orientation tensor method can 
validly be applied. Starkey (1993) criticises theoretical 
distributions for being unable to cope with real data, but 
the angular central Gaussian should be better than most 
as it can deal with any distribution based on three 
orthogonal axes, in other words the situation that the 
orientation tensor method assumes. For example neither 
can cope with paired maxima (Starkey, 1993, p. 1357), 
since the first eigenvalue and eigenvector will then be 
averages of the two maxima and hence probably be 
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Fig. 5. (a~t) Confidence regions for 10 samples from each of four populations. In all cases n = 50, B -  1000. See text for the 
eigenvalues of  each population. 

misleading. This distribution has received relatively little 
attention in the literature simply because it is rather 
intractable mathematically, but it has many appealing 
properties. Hence conclusions drawn here should be 
approximately valid in most practical situations where it 
is appropriate to use the orientation tensor method in the 
first place. 

Table 1 shows the percentages of  the samples in which 
the population points plotted inside the outermost three 
convex hulls of  the bootstrap regions, for each combina- 
tion of factor levels considered above. For  example, in 
the near-isotropic case with n = 50 and 1000 bootstraps, 
the population point was within the 3rd hull in 85.3% of 
cases, between the 2nd and 3rd in 3.9%, between the 
outer and 2nd in 6.0% and outside the outer hull in 4.8% 
of cases. When B = 100, in all cases except one, more than 
10% of outer hulls failed to include the population point, 

while when B = 1000, in all cases except one, fewer than 
10% of outer hulls failed to include the population point. 
These results strongly suggest that 1000 bootstraps are 
necessary to obtain reasonable coverage. 

Clearly samples of  size n = 25 seem to be too small, with 
sometimes twice as many confidence regions failing to 
include the population point as for n = 50. However, 
n = 100 offers a rather smaller advantage over 50. Hence 
it seems that taking samples of  size 50 is fairly reasonable. 
This is gratifying as many geologists adopt  a sample size 
of  50 anyway. 

As previously noted, the outermost  convex hull is 
highly sensitive to unusual points so that it may be more 
sensible to consider the 2nd hull. F rom Table 1, for 
B = 1000 and n>_50 the second hull contains the popula- 
tion point in at least 89% of  the simulations. Hence the 
second hull can be regarded as being in effect a confidence 
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B -  100 1000 100 1000 100 1000 100 1000 

Eigenvalues I E n out out in 1st in 1st in 2nd in 2nd in 3rd in 3rd 

0.3554 25 30.1 7.5 23.6 7.5 18.5 7.2 27.8 77.8 
a 0.3338 0.87 0.06 50 26.0 4.8 21.6 6.0 16.3 3.9 36.1 85.3 

0.3108 100 20.9 3.9 19.9 3.6 16.0 4.7 43.2 87.8 

0.5192 25 15.2 4.5 12.0 3.4 9.3 3.9 63.5 88.2 
b 0.3564 0.24 0.31 50 13.9 3.8 10.2 2.8 11.8 2.8 64.1 90.6 

0.1245 100 13.1 3.l 9.8 2.9 11.8 3.1 65.3 90.9 

0.4600 25 12.9 2.6 14.2 2.8 15.0 2.3 57.9 92.3 
c 0.4348 0.23 0.05 50 11.5 1.6 16.0 2.7 14.7 2.8 57.8 92.9 

0.1052 100 9.6 1.0 14.7 2.1 14.1 1.6 61.6 95.3 

0.6425 25 21.6 10.9 12.5 4.7 14.1 3.3 51.8 81.1 
d 0.1845 0.27 0.71 50 16.8 4.7 14.1 4.2 13.1 5.1 56.0 86.0 

0.1730 100 14.7 3.0 14.8 2.4 15.3 2.9 55.2 91.7 

region with coverage percentage somewhere between 
90% and 95%. Alternatively, we could use even more 
bootstraps and take the third or fourth hull. 

Similar studies were also performed for the simple 
tiiangular and biaxial plots, but these confidence regions 
performed disastrously in all cases except that of (b), the 
'central' point. This was as expected, given the problems 
with swopovers and 'reflection' noted earlier. Regions 
based on using the whole of the triangular plot of $1, $2 
aad $3 would probably behave reasonably, though as 
noted above such plots represent the data rather less 
informatively than those described here, and hence have 
not been investigated. In cases where the samples are 
mostly clusters and interest is in showing different levels 
of clustering then the plot of log ($1/$2) vs log ($2/$3) is 
probably more useful. Confidence regions could easily be 
constructed using the same basic ideas as here, though the 
six-way plot is likely to be unnecessary. 

CONCLUSIONS 

The most important conclusion to be drawn from this 
sludy is that the variability in sample eigenvalues is very 
large. This can be seen from both the plots of multiple 
samples (Fig. 2) and those of the proposed confidence 
regions (Fig. 5). This suggests that, for many cases in the 
literature, interpretations of the spread of sample points 
may be unnecessary since the spread can be explained just 
as easily as being due to random variation. Although 
confidence regions do not deal directly with pairwise 
comparisons between samples, it is reasonable to con- 
c]ude that, if a pair of sample points are each contained 
within the confidence region from the other sample, then 
there is little evidence for a difference between the 
populations from which they were drawn. 

A sample size of 50 seems to be the absolute minimum 
necessary to obtain usable results. The size of the 
confidence regions and the extent of swopovers indicate 
that, unless the population is an obvious cluster, results 
fi'om smaller samples will be of minimal use. The results 
of the simulation study show that a sample size of 100 

leads to only slightly higher rates of inclusion for the 
confidence regions. However, it must be emphasized that 
a larger sample size will always reduce the variability in 
the sample eigenvalues, thus reducing the spread of 
sample points on the six-way plot and, usually, reducing 
the size of the confidence region around each of these 
sample points. A larger sample size will also reduce the 
effect of eigenvalue 'drift'. Hence a larger sample will 
always lead to more accurate conclusions, and the size 
should always be at least 50. 

COMPUTATIONAL DETAILS 

All calculations were performed in a SUN UNIX 
environment using a PASCAL program calling FOR- 
TRAN and NAG subroutines and the plots were 
produced using the statistics package S +. Copies of the 
programs can be obtained free of charge from the first 
author by e-mail at ringrose@rmcs.cranfield.ac.uk. 
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